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Numerical Differentiation and the Solution of 
Multidimensional Vandermonde Systems 

By G. Galimberti and V. Pereyra 

Abstract. We define multidimensional Vandermonde matrices (MV) to be certain submatrices 
of Kronecker products of standard Vandermonde matrices. These MV matrices appear naturally 
in multidimensional problems of polynomial interpolation. An explicit algorithm is produced 
to solve systems of linear equations with MV matrices of coefficients. This is an extension 
of work of Stenger for the two-dimensional case. Numerical results for three-dimensional 
numerical differentiation are given. 

1. Introduction. Multidimensional Vandermonde matrices and their associated 
systems of linear equations will be introduced in Section 2. They are obtained as 
some special submatrices of Kronecker products of standard Vandermonde matrices. 
Systems of this type appear naturally in multidimensional problems of numerical 
differentiation, interpolation, and so on. 

Stenger [2] has studied the solvability of a more general class of submatrices of 
multidimensional Kronecker products and has given an explicit algorithm for its 
solution, but only in two dimensions. In fact, our work consists of an extension of 
Stenger's results (in a restricted case) to dimensions n > 2. We also give explicit 
computational algorithms for n = 2, 3. 

The problem that motivated this research is the following: 
Let f(x) = f(x1, . . . , xn) be an m-times continuously differentiable function on a 

domain E of the n-dimensional space R'. Let L be a linear differential operator of 
order k < m, of the form: 

k 1 

(1.1) L(f(x)) = E +E = ! , a,(x)DtIDA2 .. D.nf N, 
i=O 0j+*--t+,tn=i 9U1! .. P. Un 

where the coefficients ag1...An are given functions. 
Let {Ar} be a set of "increments" of x, i.e.: 

X + Ar cEE c Rn, and lArK I?,< h. 

We are interested in producing numerical differentiation formulae in terms of 
ordinates, which approximate L(f(x)) at a given point x =x: 

(1.2) L^(f(i)) Z (Dr f(X + Ar) = L(f(x)) + O(hP + 
r 

where k < p < m. 
If we expand the left-hand side of this last equation in a multiple Taylor formulae 

at i and equate coefficients corresponding to the same derivatives in L(f(x)), then 
the following system of linear equations for the Wr is obtained: 
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n 

(1.3) E i n6t1 <~ r(~ _EH 
r i 1 

where Ar = (1 r . * * bnr). 

We show in Section 2 how to determine the set of increments {Ar}, in order that 
system (1.3) be solvable, and, furthermore, we develop an algorithm to recursively 
obtain the w0r. 

In Section 3, we make this algorithm explicit for the cases n = 2, 3, and in Section 4 
we present some numerical results, obtained with a computer implementation. Of 
course, since systems like (1.3) appear in many other problems, the algorithm has a 
much wider field of applicability. 

It is appropriate to remark that the operation count for our algorithm, correspond- 
ing to the solution of an n-dimensional Vandermonde system of order p (see Section 2), 
is proportional to pn+ 1. For n = 3, such a system has size 6p(p + l)(p + 2), and 
assuming that Gaussian elimination were applicable (which in general will not be 
the case), the operation count would be proportional to p9, as compared with p4 for 
the algorithm developed here. Another important point is that the system matrix 
need not be explicitly generated at any time. 

Stoyakovich [3] considers the problem of polynomial interpolation in n dimen- 
sions. His approach includes also the solution of some systems of linear equations, 
but differs from ours in several respects. 

2. Multidimensional Vandermonde Systems. The Kronecker product of two ma- 
trices A, B, is a new matrix of the form: 

al1B * a1nB 
(2.1) A & B = 

(amlB ... amnB 

We shall use, in what follows, the usual conventions for multi-subscripts: s= 
(s1, .... .S, Si nonnegative integers; sI = 1 s1. If y = (Y1, ), y) then ys 
A?~l . .. Ayn 

Let n, p, q be given integers, n _ 2, q _ p ? 2. Let I = {xjs= 1, ...,n, 
s = 1, . . ., q)} be a set of real numbers satisfying xjS1 # xjS2 if s1 

# S2. Let us form 
with these numbers the Vandermonde matrices V1 = Vj (xji, . . ., Xjq), = . 

Let K be their Kronecker product K = V1 0 V2 0 *. 0 Vn 
The elements of K are of the form 

(2.2) .p - Kls',2 ',(x~l', xnI,,x ) = (x'). 

In order to introduce an adequate extension to n dimensions of Vandermonde 
matrices, we shall select some rows and columns out of K. First of all, we choose those 
rows for which ? tt < p. This can be better described by asking the components of t 
to satisfy: 

p1 < 1', 
(2.3) I2 P - i, 

n-1 

tin < I) - Eli 
= 1 
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The set of all n-tuples defined by (2.3) will be denoted by M(n, p). The number of 
elements of M(n, p) will be denoted by m(n, p). Observe that this set satisfies: 

p 
(2.4) M(n, P) = E3 {(i1, t'):t'e M(n -1, p - ), 

1ii =0 

where the sum indicates reunion of disjoint sets. 
The set of all n-tuples (x ,1, . . . , xnJ) with xi, E I, will be called X. 
Now we shall select an equal number of columns of K by choosing m(n, p) different 

elements of X and taking the columns associated with them. 
The submatrix so defined will be called an n-dimensional Vandermonde matrix of 

order p and be denoted by Q. It is clear that 1-dimensional matrices coincide with the 
usual Vandermonde matrices. 

Given w and d, m(n, p)-vectors, an n-dimensional Vandermonde system of order p 
will be defined by 

(2.5) Q0o = d. 

Observe that for n > 1, the matrix Q may be singular. 
Definition. A set of m(n, p) points F c X shall be called (p - 1)-independent, if/fthe 

corresponding n-dimensional Vandermonde matrix of order p is nonsingular. 
We describe now a procedure for choosing m(n, p) points (in many different ways), 

which we shall eventually prove to produce a (p - 1)-independent set. In the course 
of the proof, we shall elaborate a method to solve the system of linear equations (2.5) 
in this nonsingular case. 

We shall choose first a set of subscripts in an appropriate way. 
For in = 0, ..., p, choose arbitrary (distinct) 

1 _ s(j.) ? q. 

For jn = 0, , P; in-1 = O, .. ,p -in choose 

1 ? s(-Ij 9 in) ? q, S(Jn-1 in) # S(jn-1 , jn) if]-1 # in-1 

For k = n - 2, n -3, .., 1 and for in = 0, P; in- = 0, P , in; .p 
1k = 0, ,p - i=t kk+ Ii choose 1 ?_ S(ik, fJn) ? q, satisfying 

S(Jk ik 19 - - - in) 0 S(Jk19ik 1, - ,isn) if jk 0 ikl 

To shorten somewhat the notation, we introduce the partial vector subscripts 
Jk= (zk- * * * .,in) 

Finally, the chosen n-tuples are: 

(X1,s(J,) X2,S(J2)9' * ** Xn,s(J.))- 

The set of all n-subscripts J1 = U1, . .. ., jA) satisfying the above conditions will 
be denoted by M*(n, p). Obviously, the number of elements of M*(n, p) is m(n, p). A 
relation similar to (2.4) is satisfied by M*(n, p): 

p 

M*(np) = E {I( J2)J J2e M*(n - 1,p),]jl< p -IJ21 
IJ21 = 0 

Once the correspondence between n-tuples J1 and n-tuples (s(J1), S..,s(Jn)) is 



360 G. GALIMBERTI AND V. PEREYRA 

established, we can use, without ambiguity, the notation xj, for (xljSJ1)1...., Xns(J")). 

We shall do so. 
In subscript notation, (2.5) (for the above choice of basis points) is: 

(2.6) E 0 = d , t E M(n, p). 
J IeM*(np) 

We are interested in solving systems of this form. As we said in the Introduction, 
they are associated with many problems of approximation in n-dimensional spaces. 

We shall show first how to reduce the solution of system (2.6) to the solution of 
some (n - 1)-dimensional Vandermonde systems of order < p. Proceeding with this 
reduction, we shall finally arrive at nonsingular one-dimensional Vandermonde 
systems, which we certainly know how to solve [1]. This constructive proof will give 
us an algorithm for solving the system and, simultaneously, a proof of the independ- 
ence of the basis points. This is an extension of a result of Stenger [2], who proves the 
same for n = 2. 

An important case is n = 3, for which we shall give a complete detailed algorithm 
in Section 3. 

We then assume that (n - 1)-dimensional Vandermonde systems of order < p, 
with basis points chosen as explained above, can be solved. 

The first step is to obtain an adequate reformulation of the system in terms of 
certain parameters: 

P- IJ21 
(A) c(/',') = E XJI(, E2 E M*(n- l,p), P,. = 0 .P; 

(B) E x,(j ') = d, = p(pit) E M(n, p), 
J2e-M*(n - 1,p) 

where 
1L A*2 93. .. - 

XJ2 = J2 * X.J 

If we set now p = 0 in (B), a square system for the unknown parameters c?) is 
obtained: 

(2.7) X I = do0, W' e M(n - 1, p). 
J2EM*(n- l,p) 

This is an (n - 1)-dimensional Vandermonde system of order p and, according to 
our inductive hypothesis, it can be solved. 

(i) Solving (2.7), we obtain d J2 E M*(n - 1, p). 
With these values we can enter into those equations (A) which have IJ21 = p, in 

order to obtain the corresponding (.t)j: 
(ii) (use = (CJ faiI = ().1 J2 1 = ). 
Using these values in equations (A) with p1 = 1, 2, ..., As, and the same J2 as in 

(ii), we get the remaining parameters COIO) 

(iii) Cl X j I, 1 2 I = 1. I < P. 

This ends the first step of the reduction. Now we shall make an induction on p1. 
Let us assume that for p1 = 0, . . ., r - I we know: 

(uJI ' IJ21 p -r + 1; 

(r - 1 ) 1 J2 > p - r + 1, Ifi = 0.. I P; 

(J2i) 1J2 < p -r, y, 
=0. r -1. 
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This is certainly true for r = 1. 
We shall show that from these known quantities we can compute the correspond- 

ing ones for Mul = r. 
First of all, we partition the set M*(n - 1, p) into two disjoint sets: 

M(n - 1, p) = M(n - 1, p - r) + M*(n - 1, p -r), 

where AM(n - 1, p - r) = {J2 E M*(n - 1, P):I J2 I p - r + 1}. 
We can now write (B) in the form: 

(2.8) XI x2c(r) = dr I - X C(r) an' e M(n - 1, p - r). 
J2eM*(n- 1,p-r) J2eAt(n- 1,p-r) 

According to (r- 1), the right-hand side is known. Thus, (2.8) is an (n - 1)-dimen- 
sional Vandermonde system of order (p - r), which can be solved in order to provide 
the unknown parameters c(r) for J2 E M*(n - 1, p - r). 

Considering now (A) for all J2 E M*(n - 1, p) satisfying I J2 I = p - r, we get: 

r 

(2.9) C(/21) - E3 x'"w?J1 J2 E M*(n-1, p), I J21 =p -r, /,t 0, * *, r. 
ii=O 

The C('/1) are known from (r- 1) for y1 = 0, . . ., r-1, I- 2 = p - r, and the 
c(r) have just been calculated. Therefore, (2.9) is a one-dimensional, nonsingular 
Vandermonde system of order r, which we can solve for the unknown quantities coj1, 

jl = 0,...,r, 1J21 = p-r. 
Once these are obtained, we can feed them back into (A) to compute the remaining 

CJ2 

r 
C(/ 1) = Z XCJ1, jU = rJ.2, P I = p- r. 

jJi0 

This completes the induction step r, since all the necessary quantities have been 
obtained. 

After the r = p step we would have computed all the oj1, and the system (2.6) 
is solved. 

3. Explicit Algorithms for n = 2, 3. We explicit now the general algorithm, 
described in Section 2 for the cases n = 2, 3. 

In order to avoid the confusing shifting of subscripts that is necessary in some 
computer languages, we shall restate our problem in a slightly different way. For 
n = 2, given p > 2, fj (j = 1, . . .,p), IA (j = 1, I ..., p; i = l,...,p + 1 -j), dv 
(v = 1, . .. , p; ,u = 1, . . ., p + 1- v), where the fat's and a's satisfy the conditions of 

Section 2: f3j # fOk if j # k, aij a kj if i # k, we would like to solve the system of 
linear equations: 

p p+1-i 

(3.1) Z E Z c~fjf o= d1,, 
J=1 i=1 

for the unknowns wip. 
The algorithm is developed in p steps. 
Algorithm BIDIM. First we define dtV) = du. 
Stepk (k =1,.. p): 
(i) Obtain CkJ (j= 1, ..., p + 1 - k) by solving the one-dimensional Vander- 

monde system [1]: 
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p+ 1-k 

1 kj = d(k) =1,..,p + 1 - k. 
j= 1 

(If k =p their c = d(P).) 
(ii) Obtain (i,+ l-k (i = 1, ... k) by solving the Vandermonde system: 

k 

Z 4i p+ 1-koi,p+ 1-k = CV,p+ Ik - V = 1,..., k, 

(if k = 1, p = cIp; if k = p the process ends). 
(iii) Compute cv,p+ 1 -k (v = k + 1, ..., p) by means of: 

k 

Cvp+ 1-k = Z ip+ 1-kOi,p+ 1 -k 

(iv) Compute 

d( -) = d(v _ - I kvp+ k (v = k + 1,...,p; = 1 ..., p + 1-v). 

For n = 3 we have to solve the system: 

p p+ 1-k p+2-j-k 

E E E a~~~V-p-A-1 dvz Z Z ~b~'fl(ijk ' 0Oijk =~ 
(3.2) k= I j= _ i= 1 

v= 1, ...,9p; ju= 1,...,9p + 1v; p= 1, ,+ 2 - v. 

(Now the V's, ft's and a's satisfy: yj # Yk if j # k; fik # fik if j # i; jijk # 0sjk if 
a : s.) The algorithm takes again p steps. 

Algorithm TRIDIM. First we define dV) = d, . 

Step N (N = 1, . . ., p): 
(i) Obtain CNjk (k = 1,...,p + 1 -N; j= 1,...,p + 2-N-k) bysolving 

the bidimensional Vandermonde system (using BIDIM): 
p+ 1-N p+ 2-N-k 

-ITA-1CNjk = d (N) 

k= 1I j=1 

8= l,***,p+~ N; 1- ; = 1...p +2 -N - I. 

(If N = p, cp1 =dP) 
(ii) For k = 1,...,p + 1 - N;] = p + 2-N - k obtainOijk (i = N) 

by solving the Vandermonde systems: 
N 

Z aijk WOijk = Cvjk, V = 
i = 1 

(If N = 1, wljk = 
('Ijk (j + k = p + 1); if N = p the process ends.) 

(iii) For k= 1,...,p+ 1-N;j=p+2-N-k compute 
N 

CVjk = Z iik 1ijk V = N + l,...,p. 
i = 1 

(iv) Compute 

d(s, = (N+ 
)-d(N )-1 , 

k+j=p+2-N 
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4. Numerical Results. Algorithm TRIDIM was implemented as a FORTRAN IV 
program and tested on an IBM/360-40 computer. A listing of this program can be 
found in Pub. 69-07, Departamento de Computaci6n, Facultad de Ciencias, Universi- 
dad Central de Venezuela. 

The Vandermonde systems were those obtained in the process of generating nu- 
merical differentiation formulae as explained in the Introduction. An evenly spaced 
mesh of width h was used throughout, and the nodal points considered were those 
contained on the tetrahedron x > 0, y > 0, z > 0, x + y + z ? p h, translated 
so its center of mass coincided with the point (x0, yo, z0) at which L(f) is desired. 

We give here results for two functions: f1(x, y, z) = sin(x + y + z) and 
f2(x, y, z) e- (x+ Y+ Z), several orders p and mesh sizes h and two differential operators: 

Ll(f)= h(Dx + DY + DZ)f; 
4 k-i 

L2(f) = E E hkakj[LxDDi + DJD-i + DJDi f 
k=2 j= 1 

with a21 = 1, a31 = a32 = 0.5, a41 = a43 = 0.15, a42 = 0.25. 
The Tables below show i: the relative errors between the exact Li(f j) and the ap- 

proximated values obtained with Lih(f j) (see (1.2)). The weights w, for Lih(fj) have 
been computed with TRIDIM (see (1.3)), the whole process being carried on double 
precision (- 16.8 decimal digits). As usual: m, n -m x 10'. 

s for Ll(Jl) s for L2(JA) 

"' 3 6 10 \ 5 8 10 

1/4 4, -2 1, -5 1, -9 1/4 2, - 1 ,-4 4, -6 
1/8 1, -2 7, -7 9, - 12 1/8 4, -2 2, -6 2, -8 
1/16 2, -3 2, - 8 2, -14 1/16 1, -2 3, - 8 6, -liI 

(x0 = y0 = z0 = 0.25) (x0 = Yo = Zo = 0) 

g for LI(f2) e for L2(f2) 

'4 3 6 10 p 5 8 10 

1/4 5,-2 5,-5 2,-8 1/4 7,-2 1,-4 4,-6 
1/8 1,-2 1,-6 2,-11 1/8 7,-3 1,-6 1,-8 
1/16 2,-3 3,-8 3,-14 1/16 8,-4 2,-8 3,-Il 

(x0 = y0 = z0 = 2.5) (x0 = y0 = z0 = 2.5) 
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